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Motivation/Scientific Context

● Quantitatively model geophysical flows such as Mantle Convec-
tion, Ocean, Atmosphere to better understand dynamics of Earth.

● It is difficult to accurately represent the physical problem because
Geophysical flow models must encompass a large range of spatial
and temporal scales.

● Usingadaptivehigh-ordermethods to numerically solve the model
equations, one can extend the spatial and temporal scales over
which the model can be solved accurately.
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Motivation/Scientific Context

● For example: The Earth’s mantle
● Viscosity phase changes at around 410 km and 670 km depth

(Fixed).
● Thermal boundary layers
● Solidification/Melting and Compositional fronts.
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Motivation/Scientific Context

● Research Goals
● Construct a Parallel Adaptive Framework for solving the Navier

Stokes equations. Including refinement criteria, and solvers.
● Use this Framework to determine whether mantle plumes can pen-

etrate the regions of viscosity phase transition.
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Mathematical Model

● The governing equations for an incompressible fluid enforce the
conservation of energy, momentum, and mass for a volume of
fluid particles.

●

ρcp(
∂
∂t

T +(~u·∇)T) = κ∇2T +ρr energy

∂~u
∂t

+(~u·∇)~u =−1
ρ

∇p+ν∇2~u−~f momentum

∇ ·~u = 0 mass

● ρ - density,cp - specific heat,κ - conductivity coefficient,ρr - heat
source per unit volume,ν = µ

ρ - kinematic viscosity.
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Mathematical Model Continued: Thermal Convection

● Density variations caused by thermal expansion lead to buoyancy
forces which drive thermal convection.

● In the Boussinesq approximation, these buoyancy forces are ac-
counted for in the momentum equation, but density variations are
otherwise neglected.

●

ρ0cp(
∂T
∂t

+(~u·∇)T) = κ∇2T +ρ0r

∂~u
∂t

+(~u·∇)~u = − 1
ρ0

∇p+ν0∇2~u+~g(1−α(T−T0))

∇ ·~u = 0.

● α - thermal expansion coefficient,T0 - reference temperature,ρ0 =
ρ(T0).
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Discretized System

● Adaptive Spectral Element methods are inherently well suited for
obtaining accurate solutions in both space and time.

● The Spectral Element Method - is ahigh-order method, yields
exponential convergencerates when the solution is smooth. SEM
also has macro-elements which yieldparallel scalability.

● The Spectral Element Method usesunstructured gridsto provide
geometrical flexibility, and h-refinement yieldsalgebraic conver-
gencein areas of large gradients and fronts.
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Temporal Discretization

● Solve energy equation for temperature
● Solve momentum and mass equations for velocities and pressure
● TheOperator Integration Factor Splitting (OIFS)method is used

in solving the energy and momentum equations.
● Advective and diffusive parts are integrated separately.
● Explicit advancement of advective terms via a fourth order Runge-

Kutta scheme
● Implicit advancement of diffusive terms via a third order Back-

ward Differencing scheme.
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Temporal Discretization continued

● The OIFS algorithm can be written as:
● Start withTn−2,Tn−1,Tn, solve the IVP using RK4{

d
dsT̂j(s) =−(u·∇)T̂j(s)+ r, s∈ (0, jγ∆s]
T̂j(tn+1− j) = Tn+1− j

j

● Obtain T̂n+1
1 , T̂n+1

2 , T̂n+1
3 respectively. They are then used to ad-

vance the system using the third order Backward Differencing
Scheme (BDF3)

●

(
11
6∆t

+∇2)Tn+1 =
1
∆t

(3T̂n+1
1 − 3

2
T̂n+1

2 +
1
3
T̂n+1

3 )
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Temporal Discretization continued

● The temporal Discretization of the momentum equation is also
done using OIFS, the corresponding algorithm looks like:

● Start withun−2,un−1,un, solve the IVP using RK4
● {

d
dsû j(s) =−Re(û j(s) ·∇)û j(s), s∈ (0, jγ∆s]
û j(tn+1− j) = un+1− j

j

● Obtain ûn+1
1 , ûn+1

2 , ûn+1
3 respectively. They are then used in the

BDF3 scheme to advance the diffusive contributions of the sys-
tem.

● {
( 11

6∆t +ν∇)un+1
i −∇pn+1 = 1

∆t(3ûn+1
1 − 3

2ûn+1
2 + 1

3ûn+1
3 )

−∇ ·un+1 = 0
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Spatial Discretization

● To discretize the system of equations spatially, they are recast in
their weak form. FindT,u andp such that:

●

<
∂T
∂t

+(u·∇)T,v > = < r,v > ∀v∈ H1(Ω)d

< ∇T,∇v > +
11
6∆t

< T,v > = < f ,v > ∀v∈ H1(Ω)d

●

<
∂u
∂t

+(u·∇)u,v > = 0 ∀v∈ H1(Ω)d

< ∇u,∇v > +
11
6∆t

< u,v > + < p,∇ ·v > = < f ,v > ∀v∈ H1(Ω)d

< q,∇ ·v > = 0 ∀q∈ L2(Ω)
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Spatial Discretization

● First the domain is broken into K non-overlapping elements. Thus
obtaining a system of integrals summed over non-overlapping el-
ements.

● ChoosingGauss-Lobatto Legendre (GLL)quadrature rules to solve
thevelocity, andtemperatureintegrals, andGauss Legendre (GL)
rules to solve the integrals involving thepressure, and thediver-
genceof the velocity, one obtains a Spectral Element spatial dis-
cretization.

● We have implemented mesh generation routines that create rect-
angular grids, with rectangular elements, with GLL points defined
for the velocity grid and GL points defined for the pressure grid.



14

Figure 1: Computational Grid for velocity nodes. 16 elements, polynomial degree 5
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System Discretization Continued

● After applying these temporal and spatial discretizations, the re-
sulting system of matrix equations becomes

● Conservation of Energy equation:
● {

M d
dsT̂j(s) =−ReC(û j(s))T̂j(s)+Mr, s∈ (0, jγ∆s]

T̂j(tn+1− j) = Tn+1− j
j

●

(
11
6∆t

M +κA)Tn+1
i =

M
∆t

(3T̂n+1
1 − 3

2
T̂n+1

2 +
1
3
T̂n+1

3 )
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System Discretization Continued

● Conservation of Momentum and Mass equations:
● {

M d
dsû j(s) =−ReC(û j(s))û j(s), s∈ (0, jγ∆s]

û j(tn+1− j) = un+1− j
j

●

(
11
6∆t

M +νA)un+1
i −DT pn+1 =

M
∆t

(3ûn+1
1 − 3

2
ûn+1

2 +
1
3
ûn+1

3 )

−Dun+1 = 0
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System Discretization Continued

● Tensor product formulation of the Spectral Element Method, al-
lows thesystem matrices appliedefficiently via1D tensor product
evaluations, and are thus never stored.

● Matrix vector products are applied by smaller matrix matrix prod-
ucts. Namely,

(An×n⊗Bn×n)n2×n2un2×1 = Bn×nUn×nA
T
n×n

● This method of evaluation reduces the d-dimensional, n-mesh point
O(n2d) matrix vector product operation to aO(nd+1) matrix matrix
product operation.
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System Discretization Continued

● Dependencies along common edges/faces of elements is handled
after evaluation of an operator on a vector.

● These dependencies are handled using a method calledDirect Stiff-
ness SummationΣ′ .

●

Figure 2: (Left) Global ordering and (Right) local ordering. Direct stiffness summation Σ′ is achieved via the mapping
between the local and global node ordering.
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Stokes System

● A Runge-Kutta integration, and a Helmholtz solve for tempera-
ture. A Runge Kutta integration and a Stokes system solve for
velocity and pressure.

● The most challenging, and computationally expensive operation
is the Stokes system solve.[

H −DT

−D 0

](
un+1

pn+1

)
=

(
f n+1

0

)
● H is the symmetric positive definite Helmholtz operator.f is

terms on the right hand side of the BDF3 equation.
● D is the discrete divergence operator andDT is the discrete gradi-

ent operator.
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Stokes System continued

● Solving this coupled system exactly requires a slowly converging
Uzawa algorithm.

● Solve forpn+1

DH−1DT pn+1 =−DH−1 f n+1

● Solve forun+1

un+1 = H−1DT pn+1+H−1 f n+1

● Instead, the Stokes system can be solved approximately, up to the
error of the time stepping method already chosen.
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Stokes System continued

● This is done by performing a decoupling of the pressure and ve-
locity terms by introducing a new matrixQ, and via a block LU
factorization.

● [
H −HQDT

−D 0

](
un+1

pn+1

)
=

(
f n+1

0

)
+

(
rn+1

0

)
● Performing block LU one obtains:
● [

H 0
−D −DQDT

](
u∗

pn+1

)
=

(
f n+1

0

)
● [

I −QDT

0 I

](
un+1

pn+1

)
=

(
v∗

pn+1

)
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Stokes System continued

● Q = 6∆t/11M−1 gives a first order splitting error, and results in
DQDT being SPD.

● This choice ofQ results in thefractional step method, v∗ is an
approximation tovn+1 which is not divergence free. The second
step removes the divergence fromv∗ and stores the result invn+1.

● Q= 6∆t/11M−1−(6∆t/11)2M−1AM−1+(6∆t/11)3(KM−1)2M−1

gives a third order splitting error, and results inDQDT being SPD.



23

Adaptive Mesh Refinement

● Spectral element methods inherently yield exponential convergence
to a smooth solution.

●

Figure 3: Convergence Analysis for increased mesh resolution. Number of elements for p-refinement set at 4.

Polynomial Degree for h-refinement set at 4. Test equation ∇2u = x7y8+ 56
72x9y6
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● To avoid spurious oscillations in the solution, the number of ele-
ments will increase in regions of sharp fronts or gradients.

● Interpolation between non-conforming elements is made during
direct stiffness summation.

● We have implemented our methods to allow for adaptive mesh
refinement schemes.

● The next step in our implementation is to create interpolation schemes
to share information between non-conforming elements.
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Parallelization

● The Spectral Element Method is well suited for parallel architec-
tures due to it being a coarse grained algorithm. i.e. local dense
computations are performed before requiring sparse inter-element
communication.

● Elements are broken up into groups (macro-elements) and assigned
to processors.

● A Parallel Direct Stiffness Summation,Σ′, is then used share and
weight information on the macro-element boundaries between pro-
cessors.
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Parallelization continued

●

Figure 4: (Left) Global ordering and (Right) local ordering. Direct stiffness summation Σ′ is achieved via the mapping
between the local and global node ordering.

● A global index map is stored on each processor containing the
global index for each its nodes.

● A global sort is performed to determine the processors which share
a node with the same global index, nodal data is then transferred
to the proper processors, and averaged on each processor.

● This implementation is independent of geometry, and allows for
complicated domains, unstructured grids, and adaptive methods.
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Current Progress

● Object Oriented Framework for Parallel Adaptive Spectral Ele-
ment Method is being written and tested.

● Object Oriented methods to create rectangular meshes and index-
ing maps

● Parallel Direct Stiffness Summation routine has been implemented
using MPI.

● 2D Advection-Diffusion equation
● 2D Laplace and Poisson equations
● Solvers have been implemented to allow for adaptive grids.
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Future Work

● Correct bug in Stokes solve.
● Interpolation schemes between non-conforming elements for adap-

tivity.
● Refinement criteria for h/p refinement, e.g. error estimators, front

tracking methods.
● Use framework to investigate the ability of plumes to penetrate the

410 and 670 viscosity phase changes.
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Summary

● Quantitatively model geophysical flows such as Mantle Convec-
tion, Ocean, Atmosphere to better understand long term dynamics
of Earth.

● Geophysical flow models must encompass a large range of spatial
and temporal scales in order to accurately represent the physical
problem.

● Our Parallel Adaptive Spectral Element Scheme will provide a
framework to allow scientists to study geophysical flows.

The End — Thank you
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